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Abstract. We introduce  the  concept of quantum  recurrent  networks by incorporating 
classical  feedback  loops  into  conventional  quantum  networks. We  show  that  the  dy- 
namical  evolution  of  such  networks,  which  interleave  quantum  evolution  with meas- 
urement  and  reset  operations,  exhibit  novel  dynamical  properties  finding  application 
in pattern  recognition,  optimization  and  simulation.  Moreover,  decoherence in 
quantum  recurrent  networks  is  less  problematic than in conventional  quantum  net- 
work  architectures  due  to  the  modest  phase  coherence  times  needed  for  network op- 
eration. 

Introduction 

Large scale classical simulations of stochastic processes require vast quantities of random 
numbers.  However, since the  pioneering  work of Church,  Turing,  Post  and G a e l ,  it has 
been  known that classical computers  can  only  computefuncrions.  In other words, the class 
of tasks that can be accomplished  with a classical computer is exactly equivalent to the 
class of  computable functions. However, as there is nofuncrion for computing a true ran- 
dom number, classical computers can only feign randomness. The purported calls  to the 
“random  number  generator” often seen  in  modem  programming  languages are, in reality, 
calls  to a pseudo-random number generator. A pseudo-random  number  generator is a 
deterministic function  whose  successive  outputs  pass  many of the statistical tests of ran- 
domness.  Unfortunately, the sequence of outputs can also harbor subtle correlations that 
are not  immediately  apparent  from  the  common statistical measures  of  randomness. 
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To illustrate  this  point vividly,  consider the RANDU “linear  congruential  genera- 
tor”, a notoriously  bad  pseudo-random number generator  that  was  common  on IBM main- 
frames of the 1960s. A linear congruential  generator is defined  by: 

N k + ,  = ( C  N ,  +m) mod n 
where I ,  m, n are fixed integers  and k = 1.2.3, ... The  resulting  sequence of numbers, 
appears,  superficially,  to  generate a set of random samples from a uniform  distribution  that 
lie in the  range 0 to n - 1 inclusive. We say  “superficially” in the  sense  that,  the  sequence 
of numbers N ,  , N ,  , ... p asses many  statistical  tests of randomness.  However,  there is a 
subtle  correlation  lurking  amongst  these  numbers  that  becomes  apparent  if  you  use  them  to 
choose a set of (supposedly)  random  points  in a high  dimensional  space.  In  particular, if, 
as in RANDU, C = 65539, n = 2”. m = 0 and N o  = 1 then successive triples  produced 
by the  generator, N ,  , N,, ,  , Nk+* , can  be  taken  to define the x-, y -  and  z-coordinates of a 
point in a 3-dimensional  space.  These  points  are  plotted  in fig.1 below  from  different 
viewing angles. From  most  viewing  angles  the  points  appear  to  be  randomly  distributed. 
But from a particular  viewing  angle  you  can see that they  are  not at all  randomly  distrib- 
uted. In fact  they  lie in a set of parallel  planes.  Thus  the  sequence of supposedly  “random” 
numbers  output  from  the  linear  congruential  generator  are  not  random  at all and  could give 
misleading  results  if  used in a numerical  simulation of a stochastic  process. 
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Fig. 1 The same cube of points seen from four  different  viewpoints 

Pseudo-random  number generators are better  today than they were in 1960. But 
one should  not be complacent. As recently as 1992 bugs in a supposedly  "good" pseudo- 
random number generator were discovered when a numerical simulation of an Ising spin 
system was performed as a test of the simulator against a known benchmark for which 
analytical results were  known [Ferrenberg et ai. 921. 

One way to correct the problems inherent with  pseudo-random number generators 
is to build a generator that exploits a truly  random  process  itself. Strictly speaking, there is 
no such thing as randomness in classical physics. Nevertheless, certain classical dynami- 
cal systems exhibit a high degree of instability that  would  seem  to  make them reasonable 
candidates for effectively random  number generators. Unfortunately, yet again one must 
be careful. Recently a study  of the use of the logistic map,  one  of  the simplest generators 
of deterministic chaos, has revealed that  the chaotic sequence of numbers output does not 
possess exactly the same statistical properties as a truly  random sequence[Phatak & Rao 
951. The deviation might be quite slight, but in situations where billions upon billions of 
random numbers are needed it could lead a Monte Carlo simulation astray. 

The moral  is  that  you cannot use classical physics to generate truly random num- 
bers. However, in quantum  physics,  the non-deterministic outcome  of a measurement 
made on a system in a superposed quantum state is, us u murrer of principle, random. 
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Unfortunately, quantum non-determinism is generally regarded as being  of lesser impor- 
tance  than other quantum phenomena such as quantum interference and entanglement. 
This is partly because many people believe, mistakenly,  that  pseudo-random number gen- 
erators are “good enough” and  partly  because  the impressive speedups exhibited by quan- 
tum algorithms for factoring composite integers and for finding an item in an unsorted 
database, are due to interference and entanglement effects rather than non-determinism. 
However, such a dismissal of quantum non-determinism  is premature. No matter how 
good  new pseudo-random number generators are purported to be, their adequacy can only 
be assessed empirically within the context of a specific application. Moreover, the key 
quantum effect on  which quantum cryptography depends is quantum non-determinism. 
We argue that as quantum non-determinism is,  intrinsically, a random process, it provides 
a much better basis for the design of a random  number generator. 

It is easy to define a quantum procedure for selecting random integers in the range 
0 to 2” - 1 by preparing n qubits in the state I O>lO>(O)..-I 0) , applying the Walsh- 
Hadamard transform to each qubit separately, creating an  equal superposition of all possi- 
ble states of  the register, and  then reading the  memory register. Once you  have a mecha- 
nism  for generating uniformly distributed random  numbers you can create a generator for 
any  other distribution using a function transformation[Tuckwell95]. 

However true random  number generation is not  the same as true stochastic process 
generation. For example, in a Markov process the probability  of obtaining a particular 
outcome for the  next state depends upon  the  identity  of  the last state visited. By contrast 
the sequence of outcomes from a quantum  random  number generator are independent, 
identically distributed random variables. It is therefore interesting to ask whether there is a 
more direct way  of  using quantum mechanics to simulate stochastic processes? 

Quantum  Recurrent  Networks 

We  can  begin be asking what general features must such a simulator possess? First, we 
need to be able to generate a sequence of classically observable samples. This suggests 
that we are going to have to imagine a quantum device that allows repeated measurements. 
Second, we need to be able bias the probability that a given state will appear as the next 
output given knowledge of some or all  of  the  previous  outputs. This is because, by defini- 
tion, stochastic processes possess such a memory effect. The simplest way to accommo- 
date such a memory effect is to imagine that  the device is  reset in a new state that some- 
how takes account of  the states visited so far.  These considerations lead  naturally to our 
notion  of a “quantum recurrent network”. 

A quantum recurrent network consists of a conventional quantum network aug- 
mented  with a classical measurement and  quantum  reset operation. The design of a one 
dimensional quantum recurrent network  is  shown in Fig.2. 
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Fig. 2. A One  dimensional quantum recurrent  network 

An initial state, Iw), is fed into the  network,  transformed  under  the  action of a 
unitary  operator, U , subjected to a measurement,  indicated  by  the  measurement  operator 
M {  } , and  the  result of the mequrement  is used  to  control  the  new  state  fed  back  into  the 

network  at  the  next  iteration.  One is free to record,  duplicate  or  even  monitor the sequence 
of measurement  outcomes, as they  are all merely  bits  and  hence  constitute classical infor- 
mation.  Moreover,  one is free  to  choose the  function  used  during  the  reset  phase,  includ- 
ing  the  possibility of adding  no offset state  whatsoever.  Such  flexibility  makes  the QRN 
architecture  remarkably  versatile. To simulate a Markov  process, it is  sufficient to  return 
just  the  last  output  state  to  the  next  input  at  each  iteration. 

Quantum Reset Operation 

The reset  operation  can be accomplished  using  conditional  quantum logic. The  basic  strat- 
egy is to  condition  the  operation  performed  on  the offset state I v) upon  the  last  measured 

outcome, 1'). For example, I v) describes  the  state  of 3 qubits. then  the  reset  circuit  will 
have  the form shown in Fig. 3. 

s! 
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Fig. 3. Most general quantum reset circuit. 

Here,  a  white  dot  represents  the  binary  value 0 and  a  black  dot  the  binary  value 1.  
Mathematically,  such  a  reset  circuit is described  by  a 64 X 64 block  diagonal  unitary  ma- 
trix in which each  block, Si , is an 8 x  8 unitary  matrix. 
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Thus if the last  measured  output  were. say, I i )  = IO1 1) then  the state re-entering  the  circuit 

at  the  next  iteration will be S,l y ) .  An  unfortunate  drawback of the reset scheme is that 
the  circuit  contains an exponential  number of gates.  Later,  we  shall see that it is possible 
to invent  alternative  reset  strategies  that  do not require  exponentially sized  circuits. 

Network Dynamics 

By design,  we  imbue  the  quantum  recurrent  network  with a discrete  time  evolution  ac- 
cording  to  the  equation: 
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where Ir(r) is the  input to the  network  at  time r, U is a unitary operator  defined  by 
U = exp(iHAf/h), and M is a measurement  operator  (in  the  computational  basis)  that has 
the effect  of projecting  the evolved state U I V(r) into  one  of  the  eigenvectors of M . The 
curly  brackets  are  intended  to emphasize that M is to  be  taken as a measurement  opera- 
tion  not a matrix  product. In the  simplest case, the  combination  function f , can be merely 
addition followed by renormalization, giving the  specialized  update  rule: 

i w c ~ . a t ) ) = ) ~ { ~ l . ( ~ ) ) } + l ~ O ) ~ ~  

where  the  notation 1 1 represents  renormalization. As each  iteration involves a meas- 
urement  and  reset  operation,  decoherence,  the  phenomenon  that  bedevils  most  hypothetical 
quantum  computations,  can be largely  ignored, as the  quantum  recurrent  networks  need 
only  operate  coherently in between  successive measurement  operations; an interval of 
duration A t .  

In general,  if  one  were  to  record  the  sequence  measurement  outcomes, it would  not  set- 
tle  down  to a predictable  pattern.  Instead,  the  sequence  would  hop  about  erratically  be- 
tween a finite, but  possibly  exponentially  large,  number of  states,  executing a true  stochas- 
tic process. If the  initial, i.e., offset, state  vector is 

and M is a measurement  operator in the  computational  basis,  then I ~ ( t  + Af)) , the  recur- 

rent  state  re-entering  the  circuit,  must  consist of the  sum of the offset  state, I ~ ( 0 ) )  plus 

quantum  state  (constructed  afresh), l i)  , that  corresponds to the  last  measured outcome, i . 
Hence, the  recurrent  state  takes  one of the  forms: 

(as ’  
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" 

' N - l ( O ) )  

with  re-normalization  factors: 
Ro =Il+u,,(O] 2 + I  uI(O)1'+ ... 

I?, "uo(0)~' +II+a,(O)('+... 

RN-1 =la,(O]' + 1 ~ 1 ( 0 ) ( 2 . . . ~ l + ~ N - , ( O ~ '  
Thus,  the  recurrent  (quantum)  states  entering  the  circuit  and  the  measured (classical) out- 
comes follow the Same Markov  process. The transition  probability  matrix, q ,  for this 
process is given by  examining  how  each of the  recurrent states, I m ) .  . . I q 5 + , )  evolve under 
the  action of U: 

T , =  

... 

... 

where 
N - l  N - 1  
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7’, specifies, therefore, a classical transition probability matrix  between  a set of quantum 
states (the recurrent states) or equivalentiy between  a set of classical states (the measure- 
ment outcomes). 

Stochastic  Attractors 

The process defined by the  transition  probability matrix T, generates a trufy random se- 
quence of eigenstates. Although, for a  given choice of U and Iy(0) every realization of 
the process will, in general, yield  a different sequence of states, the statistical properties of 
these sequences, such as the frequencies of  the various states visited,  will eventually con- 
verge  to  a fixed distribution. This fixed distribution, is called a stochastic utfructor, and 
may be calculated as the  fixed point of T, acting on any re-entrant state lei). 

Thus the  quantum recurrent network provides a  mechanism  for generating true sto- 
chastic attractors. Our model  uses  neither  pseudo-random  number generators nor classical 
white  noise. The time taken  to converge to this attractor is  governed by the size of the 
largest eigenvalue of the transition  matrix . 

To be useful for Monte Carlo simulation, one would  like  to  be able to tailor the 
quantum recurrent network so that  it generates stochastic attractors that have prescribed 
characteristics. This can  be  accomplished by a process called “learning”. “Learning” 
consists of adapting model parameters until the quantum recurrent  network produces the 
desired stochastic attractor to within an acceptable tolerance. This can be accomplished by 
varying the  initial state fed  into  the  network, Iy1(0>>, the  duration of  the coherent evolution 
phase, A t ,  or by selecting a different unitary matrix, U.  From  a  practical perspective, as U 
will be embodied in physical hardware, it will be easier to  perform learning by varying just 
lv(O>) and/or Ar. Varying A t  does, of course, change the  unitary transformation applied 
during the coherent evolution phase, so it achieves a similar effect to picking a different U. 

An arbitrary N x N dimensional unitary matrix has exactly N 2  free parameters. 
Therefore, in principle, a one dimensional QRN can generate a stochastic attractor having 
up to N 2  degrees of  freedom. The method  used  to find a unitary matrix U that  will gener- 
ate a stochastic process with  the  desired properties, could be based  on analytic minimiza- 
tion, gradient descent or genetic algorithms[Hertz, et al. 91 I. 
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~y(O))=(-.O93-368i)~OOO)-(.389+.311i) IOOl)-(.O29-.114i) (010)+(.109-221i) loll)+ 

(325-371') 1100)-(290+.162i) 1101)-(330-.16Si) 1110)+244 1111)  

IO00 iterations of the QRN having  this  and I do)) induces  the  stochastic  attractor 

shown in Fig. 5. 
"" 
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Fig. 5. The attractor generated by the "trained" QRN. 

As you can see the  agreement  between  the  target  attractor  and  the QRN's attractor is very 
good. Moreover,  one also learns a plausible  transition  probability  matrix for the Markov 
chain  that  induces  the  target  attractor. 

.243 .009 .236 

.I73 .003 .090 

.147 .025 .319 

.026 .033 .243 

.129  .152 .028 
S O 8  .036 .010 
.OI6 .I39 .030 
.059 .052 .I48 

.088 .121 .045 

.069 .151 .343 

.061 .168 .066 

.187  .371 .022 

.001 537 .036 

.203 .244 .069 

.021 319 .028 

.063 .378 .082 

201 .057 
.048 .I23 
.155 .059 
,066 .052 
.095 . a 2  
.118 .021  
.409 .038 
.048 .I70 

This  transition  probability  matrix  is  not  unique  because,  if  the  attractor  contains N de- 
grees of freedom,  the  corresponding  transition  probability  matrix  contains N 2  - N de- 
grees of freedom.  Thus  the  transition  probability  matrix  is  not as constrained as the  at- 
tractor itself. 
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Simulating an Eight  State  Markovian  Process 

Suppose we want to generate an 8 state Markov process that  would generate the stochastic 
attractor 

Fig. 4. Stochastic  attractor defined on 8 states. 

For this attractor, the probabilities of seeing states 0 through 7 are  given by  0.1 19.0.085, 
0.108, 0.055, 0.341, 0.070, 0.156.  and 0.066 respectively. As the attractor is one dimen- 
sional it can be obtained using  a one dimensional QRN acting on 3 qubits. To design such 
a QRN, we begin  with  a  random  unitary matrix, C 

/-322+.197i .027+.235i -283-.008i .105-389i -344-,321’ -.I 12-385 .145-.059i 369+.12% 
.105+285i .072+.342i .182+.228i .241+.216i -.148-.209i -.182+352i .465+325i -.169+.151i 
252+206’ -345-.155i 31+326i .02+37i .088-.143i .005-.433i .I 16-341i 245tM7i 
.018-50% .061+.162i -213-.032i -.405+25li .167-.16i -308+203i 276.1841’ 336+.16li 

-.141-238 -.189-333i -.147-.I  17i .149+.297i -565+353i -229-.15i .19+.042i -.197+.192i 
-.08-335i -253+.498i .065+.278i -.178-.103i -.15+.164i 337-.187i 239-.083 -274-33 
221-33% 205t.041i -.101+.625i .177-.0991’ -.123+.003i .02-.032i -.417+.l1 li .024+383 , .18+.105i .l72+342i -.136-.222i  .019+.417i  -.065+345i  314-.189i  -.103+339i AB-Mni, 

6 =  

Given f i  , we can “train” the QRN to generate the desired stochastic attractor simply by 
varying  the offset state, I y(0)). The training is complete when  the difference between the 

QRN’s stochastic attractor and  the  target stochastic attractor is less than some threshold. 
For the  given C and  the  given target attractor, a satisfactory offset state vector is given 
by: 
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The k-Parallel Case 

Next 
are k 

we  generalize  the  concept of a quantum  recurrent  network to the  case 
networks  working in parallel (see Fig. 6). 

in which there 

Fig. 6. The  k-parallel quantum recurrent  network 

During  the  quantum  evoIution  and  measurement  phases  each  network acts inde- 
pendently of the  rest.  However,  during  the  reset  operation  the  results  of  all  the  measure- 
ments  are  combined with the  initial  state  to  yield k identical input states.  Note  that  the 
reset  operation does not  require  an arbitrary quantum  state  to  be  cloned (which is impossi- 
ble).  Instead it only  requires  that k classical  states,  the  outcomes of the k independent 
measurements, be copied. As this  information is purely  classical it  can be copied  freely. 
Moreover,  the initial state Iw(0) is known  and  can be generated  afresh as needed  by each 
of the k networks. As a result,  the  feedback  process  we  propose is guaranteed to be physi- 
cally  realizable. The purpose of moving to  the  k-parallel  quantum  recurrent  network is to 
permit  us  to  generate mulri-dimensional stochastic  attractors.  The  reset  operation gives us 
the flexibility to introduce  correlations  between  the  attractors in each  dimension. 

For  the  k-parallel QRN, the  elements  of  the  transition  probability  matrix now define 
the  probability of making  transitions  between sets of measurement  outcomes.  The  state 
entering  each of the k networks at each  iteration will have a form such as: 
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where  the sequence ili, ... it specifies the last ordered  set  of  measurement  outcomes ob- 
tained  from  the k networks  and Rk.. j k  is  the  renormalization  constant given by: 

The  mathematical form of the Aplitude depends upon how  many of the com- 
ponents in the  k-parallel  network  produced  the  same  measurement  outcome  at  the last 
iteration  through  the QRN i.e. how  many of the i ,  , in the  sequence i l i ,  . . . i ,  were  the 

same.  If  outcome it is  obtained nit times  we  have = nit +a, (0). 

As there  are k networks and each  network  can  produce  one  of N outcomes  (independently), 
the  k-parallel  transition matrix defines a mapping  from N‘ distinct  sets  of input states  to 
N‘ sets  of  output  states.  If  we  denote  the  probability  of  transitioning  from  the  set of inputs 
ili2 ... ik to  the  set of outputs j l   j t  ... j t  by p:::;’ we  have: 

A .  ..lt 

where 

Thus  the  k-parallel  transition  probability  matrix  has a tensor  structure of the  form 
= b:;:::: kl,, where  the  sequences ili2 ... it and j l  j z  . . . j ,  are  defined  with  respect 

to  some  consistent  ordering. 
For  the  k-parallel  architecture,  there are k N’ free parameters. Thus we ought to be able 

to generate  k-dimensional  stochastic  attractors  having up to k N 2  degrees of freedom. 
An  interesting  corollary of the QRN dynamics  concerns  the  dynamical  behavior of 

two k=l QRNs in comparison  to a single k=2 QRN that combines  them  both. For simplic- 
ity we  can  set  the  initial (offset) state  vector Iv/(O>> to be zero.  Considered  separately,  the 

resulting  stochastic  processes  have  transition  probabilities p: )  and p;:’ given  by: 
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By contrast the  transition probability matrix  of  the joint QRN has components: 

Clearly p:;:) f p:) x p:' in general. Thus the  two dimensional stochastic attractor gen- 

erated by a 2-parallel quantum. recurrent network is not simply the product of two 1- 
dimensional stochastic attractors. 

Alternative  Reset  Strategies 

So far, we have described the  most general quantum recurrent network, i.e., one which 
involves  an arbitrary offset state and  an arbitrary unitary operator. Unfortunately, for 
such QRNs, the reset operation requires a circuit, like that depicted in Fig. 3, which  is 
exponential in the  number  of qubits. This is  because  the  required reset is different de- 
pending on which  of  the 2" possible outcomes was obtained at the last measurement. 
Moreover, to implement an arbitrary unitary matrix as a quantum circuit could, in the 
worst  case, require an exponential number  of  quantum gates[Knill 951. Both these short- 
comings can be sidestepped, however, by a slight modification to the QRN. 

Instead  of allowing any multi-particle state vector to serve as the offset vector we 
could allow only  product states. This would enable the  reset  operation to be achieved in 
only a polynomial  number of operations. For example, suppose the offset vector for a 2- 
qubit QRN is the  product state I y ) ,  1 @)2,  then, instead  of  the  reset operation with expo- 

nential cost, i.e.,  if a and b are the  most recently measured classical outcomes, 

lv),l42 - l l I v ) , l 4 2  + I  u),  I b)2 11 , we  could  impose a qubit-by-qubit reset operation 

Iw),le)2 H I I  (Iv), +1a),)(1#)2 +lb)211. Although the latter operation is conditional 

too, the conditioning is with respect to each individual qubit rather than the state of  the 
entire multi-qubit  register. Thus, the  polynomial cost reset circuit would  have  the form 
shown in Fig. 7. 
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Fig. 7 A polynomially  sized  reset  circuit. 

Alternatively,  we  can  imagine  another  reset  strategy  inspired  by  Brassard et al’s 
discovery of a  notion of the “closest” product  state  to  an  arbitrary  entangled  state[Brassard 
& Mor 981. As we  know  the  ideal  entangled  state  that  we  should  like to feed  back into the 
QRN,  we  could  instead  use  the  closest  product  state  to it. This  would  perhaps be the best 
compromise  reset, as it would  approximate  the  generic QRN and  yet still  only  require  a 
polynomial cost reset  operation. 

Likewise, rather  than allowing U to be an  arbitrary  unitary  operation,  we  could  re- 
quire  that U be a  unitary  operation  that is implementable  in  a  polynomially sized quantum 
circuit. That is, we  restrict  consideration  to  unitary  operators (I that  can be factored in the 
form U = ( U ,  @Uu,@. . . ) . (V,  @V,@‘.)  ... where U i  and Vi are  simple  unitary  operators 
describing  I-qubit or 2-qubit  gates  and  the  total  number of terms in the  product is bounded 
by  a  polynomial in the number of qubits. As a  given  stochastic  attractor  can, in general, be 
obtained  from  several  different  transition  probability  matrices,  we  have  some  degree of 
latitude  over  the  exact  choice of U. Thus restricting  attention  to U s  having  a  special 
(compact)  decomposition  ought not to be that  limiting. 

Summary 

Quantum  recurrent  networks  provide  a  mechanism  for  generating true stochastic  attractors. 
By  a  process of learning  we  can  tune  the  free  parameters  in  a  QRN to produce stochastic 
attractors  having  prescribed  characteristics,  such as a  specific frequency  distribution  for 
the  states  visited.  Moreover, as the  QRNs  operate  by  interleaving  quantum  evolution  with 
measurement  and  reset  operations,  they  are  far  less  sensitive to decoherence  than  other 
designs of quantum  computers. 

Stochastic  attractors  find  a  wide  range of applications  in  the  physical  and  computa- 
tional sciences. For example,  one  could  use  quantum  recurrent  networks as associative 
memories.  Different  stimuli,  represented by  different  inputs 1~ [ O )  would  induce  different 
stochastic  attractors.  The  capacity of such  quantum  associative  memories i.e. the  number 
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of distinct stimuli that can be recognized without  unacceptable error, is much higher than 
for a comparable  classical  network. 
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